• Tryolabs


New technologies & random stuff.

Launching Luminoth: our open source computer vision toolkit

After a few months working in stealth mode, we are very proud to launch our Deep Learning initiative: luminoth.ai Luminoth is an open source toolkit for computer vision. Currently, we support object detection and image classification, but we are aiming for much more. It is built in Python, using Google’s Machine Intelligence framework, TensorFlow; and Sonnet, a very useful library built by DeepMind for building complex neural networks with reusable components.

Tryolabs Working Trip NYC, in pictures

Our commitment at Tryolabs is to create the best hi-tech company to be part of. We believe this is done by creating the best opportunities in terms of professional and personal growth for our team. This year we decided to do our first “Tryolabs working trip”. We rented a house in Brooklyn for one month for our team to visit and work from there. Read more about it here. The idea in a nutshell:

We'll be speaking at ODSC San Francisco & London, presenting our Deep Learning R&D findings

As we have become accustomed to, exciting things are happening in the Machine Learning ecosystem. One can easily argue that it is novel applications of Deep Learning which are leading this excitement. Real world uses of Deep Learning are growing day to day: improving machine text translation, music generation, style transfer, object detection and cooler than ever generative models are just a few examples. The vast number of new applications, and the pace of improvement over existing ones, make it harder than ever to keep up to date with the latest advancements in the field.

Object detection: an overview in the age of Deep Learning

There’s no shortage of interesting problems in computer vision, from simple image classification to 3D-pose estimation. One of the problems we’re most interested in and have worked on a bunch is object detection. Like many other computer vision problems, there still isn’t an obvious or even “best” way to approach the problem, meaning there’s still much room for improvement. Before getting into object detection, let’s do a quick rundown of the most common problems in the field.

Finding the right representation for your NLP data

When considering what information is important for a certain decision procedure (say, a classification task), there’s an interesting gap between what’s theoretically —that is, actually— important on the one hand and what gives good results in practice as input to machine learning (ML) algorithms, on the other. Let’s look at sentiment analysis tools as an example. Expression of sentiment is a pragmatic phenomenon. To predict it correctly, we need to know both the meaning of the sentences and the context in which those sentences appeared.

No Sleep till Brooklyn: Our master plan to conquer the East Coast

A pic from one of our visits to Governour Island. We’ve always been fans of the Silicon Valley and the amazing startup culture in California. We’ve been traveling from our engineering HQs in Montevideo to the Bay Area many many times and it has always been very fun and inspiring. Some of us had also the opportunity of visiting East Coast clients in Washington, Boston and NY, and it’s also a blast!

Tryolabs Scholarship for Uruguayan Computer Science students

At Tryolabs we firmly believe that every student who has the passion, determination and commitment to develop a Computer Science career, should have the opportunity to do so, independently of his/her economical condition. In Uruguay we are very proud of our public and free University educational system, which forms top quality engineers and professionals in different fields. As a matter of fact, the vast majority of Tryolabs’ engineers come from the public University (Facultad de Ingeniería, Udelar).

Magazine: A collection of our Machine Learning articles - Get a copy!

Hello everybody, exciting news here: we released our first Machine Learning magazine. We all know it. Machine Learning is undoubtedly one of the most relevant fields in Computer Science and beyond. One can easily state, looking at some data, that this field is now the talk of the town and that we are all somehow touched by it. Although we are all increasingly learning about how Machine Learning – subfield of AI – is changing our day to day, sometimes we might lack some knowledge on how Machine Learning actually works.

List of Machine Learning / Deep Learning conferences in 2017 (and beyond)

We are always trying to stay up to date with the latest research and publications around the world. This includes browsing the raw ArXiv listing (or the saner Arxiv Sanity Preserver), staying up to date with our nerd Twitter feeds and plenty of other sources (mostly /r/MachineLearning) But some things can’t be transmitted via the interwebs, that’s why we like to attend conferences and talks whenever we can. This year, like the year before, there are a record amount of conferences about Machine Learning worldwide.

React Native: a first try

I just came across an old answer I posted in Quora on August 2015 about the future of iOS development. Roughly a year and a half has passed, and things haven’t changed too much to be fair. One of the key points I mentioned in my answer is the ability to speed up the “try” cycle so you don’t have to wait to see your changes. My original bet was on the Apple side, but so far it hasn’t happened.

Code Tips, Tricks, and Freebies. Delivered Monthly.

Signup to our newsletter.

No spam, ever. We'll never share your email address and you can opt out at any time.

Hire us

Let's build a great product together.
Get in touch with us.

Subscribe to receive news and blog updates.